s

当前位置 :首页 > 信息中心 > 行业新闻

三相负荷不平衡的定义、危害及解决办法

点击率:0 发布时间:2017-6-5 13:32:12 信息来源:本站

三相不平衡的定义:

是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。由于各相电源所加的负荷不均衡所致,属于基波负荷配置问题。发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。《电能质量三相电压允许不平衡度》(GB/T15543-1995)适用于交流额定频率为 50 赫兹。在电力系统正常运行方式下,由于负序分量而引起的 PCC 点连接点的电压不平衡。该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为 2%,短时间不得超过 4%

三相不平衡的危害:

1增加线路的电能损耗。

在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。  

三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。

2增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。 

在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的 25%。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。

3配变出力减少。

配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的限制。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。

其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。 

4配变产生零序电流。

配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。配变的绕组绝缘因过热而加快老化,导致设备寿命降低。同时,零序电流的存也会增加配变的损耗。 

5影响用电设备的安全运行。

配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。 

假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。负载重的一相电压降低,而负载轻的一相电压升高。在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。所以三相负载不平衡运行时,将严重危及用电设备的安全运行。 

三相电压不平衡的发生将导致达到数倍电流不平衡的发生。诱导电动机中逆扭矩增加,从而使电动机的温度上升,效率下降,能耗增加,发生震动,输出亏耗等影响。各相之间的不平衡会导致用电设备使用寿命缩短,加速设备部件更换频率,增加设备维护的成本。断路器允许电流的余量减少,当负载变更或交替时容易发生超载、短路现象。中性线中流入过大的不平衡电流,导致中性线增粗。 

6电动机效率降低

配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。 

7、对供电企业的影响

供电企业直管到户,低压电网损耗大,将降低供电企业的经济效益,甚至造成供电企业亏损经营。农电工承包台区线损,线损高农电工奖金被扣发,甚至连工资也得不到,必然影响农电工情绪,轻则工作消极,重则为了得到钱违法犯罪。

变压器烧毁、线路烧断、开关设备烧坏,一方面增大供电企业的供电成本,另一方面停电检修、购货更换造成长时间停电,少供电量,既降低供电企业的经济效益,又影响供电企业的声誉。

8、对用户的影响

三相负荷不平衡,一相或两相畸重,必将增大线路中的电压降,降低电能质量,影响用户的电器使用。

变压器烧毁、线路烧断、开关设备烧坏,影响用户供电,轻则带来不便,重则造成较大的经济损失,如停电造成养殖的动植物死亡,或不能按合同供货被惩罚等。中性线烧断还可能造成用户大量低压电器被烧的事故。

 

三相不平衡自动补偿装置

 

三相不平衡的解决办法

由不对称负荷引起的电网三相电压不平衡可以采取的解决办法:

1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。 

2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。  

3、加大负荷接入点的短路容量,如改变网络或提高供电电压级别提高系统承受不平衡负荷的能力。 

4、装设平衡装置。简要列出以上几种解决三相电压或电流不平衡对电网及电能质量危害的技术措施。

具体应该采取哪一种措施更为合理有效,还要根据实际情况,经过技术和经济比较后确定实施。 

在低压三相四线制的城市居民和农网供电系统中:由于用电户多为单相负荷或单相和三相负荷混用,并且负荷大小不同和用电时间的不同。所以,电网中三相间的不平衡电流是客观存在的,并且这种用电不平衡状况无规律性,也无法事先预知。导致了低压供电系统三相负载的长期性不平衡。对于三相不平衡电流,电力部门除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。  

电网中的不平衡电流会增加线路及变压器的铜损,还会增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,最终会造成三相电压的不平衡。 

调整不平衡电流无功补偿装置,有效地解决了这个难题,该装置具有在补偿系统无功的同时调整不平衡有功电流的作用。其理论结果可使三相功率因数均补偿至 1,三相电流调整至平衡。实际应用表明,可使三相功率因数补偿到 0.95 以上,使不平衡电流调整到变压器额定电流的 10%以内。  

根据 wangs 定理(王氏定理)研制的低压三相不平衡自动调节装置(RWSPC-SVG)能有效解三相不平衡问题。低压三相不平衡自动调节装置就是利用 wangs 定理来进行设计的,在各相与相之间以及各相与零线之间恰当地接入不同数量的电容器,不但可以使各相都得到良好的补偿,而且可以调整不平衡有功电流。
低压三相不平衡自动调节装置(RWSPC-SVG)的原理:

低压三相不平衡自动调装置开启后,通过处接电流互感器(CT)实时检测系统电流,并将系统电流信息发送给内部控制器进行处理分析,以判断系统是否处于不平衡状态,同时计算出达到平衡状态时各相所需转换的电流值,然后将信号发送给内部IGBT并驱动其动作,将不平衡电流从电流大的相转移到电流小的相,最后达到三相平衡状态,如图所示